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Experiments are performed on axisymmetric spreading of viscous drops on glass 
plates. Two liquids are investigated : silicone oil (M-loo), which spreads to ‘infinity’, 
and paraffin oil, which spreads to a finite-radius steady state. The experiments with 
silicone oil partly recover the behaviour of previous workers’ data; those experiments 
with paraffin oil provide new data. It is found that gravitational forces dominate at long 
enough times while at shorter times capillary forces dominate. When the plate is heated 
or cooled with respect to the ambient gas, thermocapillary forces generate flows that 
alter the spreading dynamics. Heating (cooling) the plate is found to retard (augment) 
the spreading. Moreover, in case of partial wetting, the drop radius finally approached 
is smaller (larger) for a heated (cooled) plate. These data are all new. All these 
observations are in good quantitative agreement with the related model predictions of 
Ehrhard & Davis (1991). A breakdown of the axisymmetric character of the flow is 
observed only for very long times and/or very thin liquid layers. 

1. Introduction 
The spreading of liquids on solids is of interest in a variety of applications such as 

coating processes, cladding and soldering technology, and casting. In most of these 
applications non-isothermal conditions are present, leading to the occurrence of 
thermocapillary effects at the free interfaces. A spreading axisymmetric drop on a 
smooth horizontal plate subject to a non-isothermal temperature field thus exemplifies 
a problem of practical interest. From a scientific point of view the application of 
continuum mechanics in conjunction with the modelling of local microscopic effects at 
a contact line (contact of liquid, gas, solid) is likewise a challenging effort. It involves 
body forces due to gravity, surface forces at the liquid/gas interface due to mean- 
capillary and thermocapillary effects, line forces at the moving contact line as well as 
dissipative viscous forces, coupled within a free-boundary value problem. 

There is a host of theoretical approaches to the modelling of spreading drops, subject 
to a variety of approximations and conditions. A review and classification of these 
models is given by Ehrhard & Davis (1991), who themselves develop a uniform model 
for the spreading of axisymmetric drops described above, by generalizing the approach 
of Greenspan (1978) to include (i) non-isothermal conditions, (ii) more general 
dynamic wetting behaviour and (iii) a consideration of vertically acting body forces. 
Their model will be employed in the present article to evaluate the experimental results. 
Conversely, the present experiments will be used to validate the theoretical predictions 
of Ehrhard & Davis. 

There is a number of experimental studies available from the literature. Several 
experimentalists tackle the pure problem of moving contact lines in various geometric 
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FIGURE 1 .  Sketch of the problem geometry. 

configurations. Their results determine the dynamic wetting behaviour, encoded within 
the contact-angle-versus-speed characteristic 8 = flucl), with various degrees of 
refinement (see e.g. Rose & Heins 1962; Friz 1965; Elliott & Riddiford 1967; Schwartz 
& Tajeda 1972; Hoffman 1975; Dussan V. 1979; de Gennes 1985). A detailed 
consideration of their findings is given in $3.2. 

The isothermal spreading of liquid drops is the subject of a number of experimental 
investigations. Tanner (1979) conducted experiments on plane and axisymmetric 
silicone oil drops spreading on a smooth horizontal glass surface. He extracted 
spreading laws governed by capillary and viscous forces by considering an initial stage 
of the spreading process. A similar objective is the focus of the investigations of Chen 
(1988), who essentially confirmed Tanner’s axisymmetric results for the capillary- 
dominated regime, using silicone oil on glass. A combined experimental study on both 
capillary-dominated and gravity-dominated regimes was performed by Cazabat & 
Cohen Stuart (1986). They used silicone oils of various viscosities on a horizontal glass 
surface to study axisymmetrically spreading drops. Their results provide spreading 
laws for both regimes as well as information on the transition times, depending on 
various parameters. In a recent paper Levinson et al. (1988) addressed silicone oil 
drops hanging below a horizontal glass plate and, thus, obtained spreading laws for 
conditions where gravitational forces are inverted. 

There is very little work in the literature related to non-constant surface tension 
within this context. Carles & Cazabat (1989) studied drops in an atmosphere saturated 
with a volatile compound. Owing to soluto-capillary effects, they observed strongly 
accelerated spreading and wavy, three-dimensional instabilities at the drop cir- 
cumference. 

The present article aims to study experimentally the spreading of liquid drops of 
silicone oil and paraffin oil on smooth horizontal plates under isothermal and non- 
isothermal conditions. In detail, we investigate the following. (i) The isothermal 
spreading of silicone oil and observe, consistently with findings by other authors, 
unlimited spreading in conjunction with a mobility exponent of m M 2.8. (ii) The 
isothermal spreading of paraffin oil which yields limited spreading - these results are 
new. Finally, we address the non-isothermal spreading of (iii) silicone oil and (iv) 
paraffin oil and find that thermocapillary forces have a profound effect on the 
spreading. Likewise, these results are new. All experiments in groups (i-iv) compare 
well with theoretical predictions of Ehrhard & Davis (1991). Additionally, several 
earlier isothermal experiments by other authors, using silicone oil (group i), are 
included in a careful comparison. 
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2. Problem and model 
We consider the spreading of an axisymmetric drop on a smooth horizontal rigid 

plane, which is kept at a constant temperature T,. The drop is composed of a non- 
volatile Newtonian liquid and surrounded by a passive gas whose far-field temperature 
is T,. The geometry is sketched in figure 1. The shape of the interface between the 
spreading liquid and the ambient gas is given by R = A, the contact-line position is 
given by z = a, and the contact angle is denoted by 8. 

Ehrhard & Davis (1991) have examined such a system and, using lubrication theory 
and a small-mobility-capillary-number (small-C) approximation, obtain a dimen- 
sionless evolution equation for the drop shape h(r, t).  We summarize the conditions and 
assumptions used in deriving this model. The quasi-steady evolution equation for the 
drop shape appropriate to small C, 

- $h3r h,, +- h, - Gh +$Mh2rh, = 0, (2.1) 
r ‘i ( r ) r  1, 

is linked initially ( t  = 0) with the following boundary and side conditions: 

During the evolution of the drop ( t  > 0) we have the boundary and side conditions: 

1 h(a, t )  = 0,  

h,(O, t )  = 0,  lim (rhrrT(r, t)) = 0, 
,-to 

h,(a, t)  = -@(I ) ,  

a( t )  
27c rh(r, t )dr  = 1. 

I = o  

The above sets of conditions (2.2) and (2.3) retain symmetry and smoothness of the 
drop shape and ensure constant liquid volume. The instantaneous contact angle 0(t) 
depends on the speed a, of the contact line as follows: 

(2.4) 

For the above set of equations (2.1)-(2.4) Ehrhard & Davis have employed the 
following set of dimensionless variables (the rescaling is described in the Appendix) : 

0( t )  = (a,(t))l’rn + 0,. 

The evolution equation (2.1) involves certain dimensionless groups, namely the 
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mobility capillary number C, the Bond number G and the effective Marangoni number 
M ,  defined by 

Herein p, A, ow, vm are the properties of the spreading liquid, namely viscosity, heat 
conductivity, and surface tension towards the ambient helium at temperatures Tw and 
T', respectively. Further ao, Bo, 6 are the initial data for an individual drop, namely 
the radius, contact angle and volume. A, is the heat conductivity of the ambient gas 
and 6 the thickness of the thermal boundary layer established above the drop. The 
contact-line relation (2.4) comes from the dimensional characteristic relating the 
contact-line speed U,, to the contact angle 8, 

(2.7) 
Herein m 2 1 is the so-called mobility exponent, K > 0 is an empirical constant and 
8, >, 0 is the (static) advancing contact angle. Note that we employ script lettering for 
physical quantities and italic for dimensionless quantities. 

The above dimensionless groups describe the relative importance of various physical 
mechanisms. The mobility capillary number C measures the ratio of the initial mobility 
speed to the speed given by viscous forces and mean surface tension. The Bond 
number G relates gravitational forces and mean surface tension and thus allows us to 
judge the significance of gravity. The Marangoni number M provides a measure of the 
relative importance of thermocapillary effects with respect to mean capillary effects. It 
involves quantities which determine the heat transfer at the liquid/gas interface. For 
M > O(M < 0) the plate is heated (cooled) with respect to the ambient gas. 

The assumptions and approximations used to derive the above model might be 
summarized as follows : 

(i) A slip law is posed to relieve the contact-line singularity. 
(ii) The plate is isothermal and the heat transfer at the liquid/gas interface is 

u,, = K ( e  - e A y .  

modelled by a heat transfer coefficient measured by the Biot number B, 

B = a0 Bo A, V/SA. (2.8) 
B + 1 since the interface is nearly adiabatic. 

(iii) The interface surface tension is linear in temperature. 
(iv) Lubrication theory (for thin drops) is employed so that 8, < 1 as usual; the 

mobility capillary number is small. 
(v) In the analysis of the evolutionary system (2.1)-(2.3), C+O so that the spreading 

is limited by the mobility of the contact line (and not by slippage); equation (2.1) thus 
has no time derivative. In this case at leading order in C, the slip coefficient that would 
normally appear in (2.1) may be set to zero. 

Based on the above summary of the model by Ehrhard & Davis (1991) we use that 
model for a set of simulations demonstrating the influence of the temperature field. 
Figure 2 shows the evolution of the drop shape for three typical situations, namely a 
cooled plate ( M  = -0.05), an isothermal plate ( M  = 0) and a heated plate ( M  = 0.2). 
The initial and subsequent drop contours are plotted in time steps of At = 0.4. We 
clearly see the effect of the temperature field on the development of the drop. For a 
cooled (heated) plate the spreading is augmented (retarded) with respect to the 
isothermal case. The drop contour for t +  co, which is given by the dashed lines, is 
flatter (steeper) if the plate is cooled (heated). The above phenomena are caused by 
thermocapillary-driven flows within the drop, which alter the pure-spreading flow field 
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FIGURE 2.  Evolution of the drop shape h(r, t )  as predicted for various thermal conditions. Parameters 
are G = 0, 0, = 0.25, m = 2.8, a time step of At = 0.4 is used to create a number of successive 
contours. Dashed contours are obtained for t --f 00. 

present in the isothermal situation. Note that owing to the separate scalings of the two 
spatial coordinates, a thin drop with a 9 A in real dimensions, appears strongly 
stretched in dimensionless coordinates r, z. Thus figure 2 shows thin drops. 

3. Experimental methods 
We aim to assess experimental data for spreading drops subject to a variety of 

thermal conditions. We mainly concentrate, in this first experiment on non-isothermal 
spreading, on the measurement of the wetted area underneath the drop. For this 
purpose we apply an optical schlieren-type technique. We also need to establish 
extremely carefully controlled thermal conditions. These are the main ideas leading to 
the following set-up and methods. 

3.1. Set-up of the experiment 
Figure 3 illustrates the experimental set-up. The actual experiment takes place within 
a closed Plexiglas cylinder of 200 mm in diameter, where the spreading drop (silicone 
oil or paraffin oil) is placed upon a temperature-controlled glass surface. The drop is 
positioned using an injection needle, and its mass is determined to an accuracy of 

1 pg by difference weighing using a precision scale. 
The horizontal surface on which the spreading takes place is composed of a copper 

cylinder 130 mm in diameter covered on top by a thin glass plate. The copper cylinder 
is kept at constant temperature T, by circulating coolant (accuracy i- 0.1 "C). The glass 
plate is 160 pm in thickness and is held by adhesive forces provided by a thin oil film 
between glass plate and copper cylinder. Thus an intimate contact is established which 
guarantees several advantages. (i) The 'flexible' glass plate is kept at a precisely plane 
position attached to the top of the copper cylinder. (ii) A reproducible smooth surface 
is provided with defined chemical properties. (iii) A perfectly conducting thermal 
boundary condition is approximately realized. The effect of the glass plate and the oil 
film on the thermal boundary conditions has been checked by calculating temperature 
profiles across those layers for typical heat fluxes. We find that the temperature 
difference across the added layers is always less than 2% of the total applied 
temperature difference T, - T,. Thus, the perfectly conducting boundary condition 
provided by the copper cylinder is maintained to a reasonable degree. The experimental 
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FIGURE 3. Sketch of the experimental set-up. 

module described above can be adjusted to a horizontal position by means of three 
micrometer screws and a precision gauge. 

Helium is chosen as the ambient gas within the Plexiglas cylinder because of its high 
heat conductivity A,, which enforces thermal effects. To provide a constant helium 
temperature T, for non-isothermal situations, i.e. for T, + T,, it is necessary to set up 
a flow inside the ambient helium together with an adequate temperature control. 
During the spreading process we establish a weak stagnant point flow entering radially 
at the top of the Plexiglas cylinder and proceeding vertically downwards towards the 
horizontal glass plate. The helium leaves the Plexiglas cylinder through the coaxial gap 
between the copper and Plexiglas cylinders. We use an average axial velocity of 
u M 10 mm/s for the flow in the Plexiglas cylinder while just above the drop we expect 
a radially directed flow with significantly lower velocities. We have double-checked 
very carefully the ambient helium flow with respect to the development of distortions 
of the liquid flow inside the drop. During preliminary measurements we sought the 
'critical gas flow rate' which causes the first evident changes in the isothermal 
spreading laws. Later, the gas flow rate is set at 25% of this 'critical' rate. 

The helium entering the experimental volume is conditioned at a temperature T, 
and, additionally, inside the Plexiglas cylinder copper sheets at the circumference are 
kept at T, by circulating coolant. Thus the helium hits the glass plate with a fairly well- 
defined temperature, whereas temporal fluctuations may have amplitudes up to 
f0.5 "C for an applied temperature span of T, - T, = & 25 "C. Three PT-100 resistor 
thermometers monitor the temperatures of the ambient helium T, at two locations in 
a horizontal plane 5 mm above the glass plate, and T, at the top surface of the copper 
cylinder. The accuracy of the temperature measurements is kO.01 "C. 

The optical measurement of the wetted area d ( 4 )  is based on a schlieren system 
using reflection. We use a mercury-vapour light source together with a spatial filter and 
various lenses to provide a parallel beam of 10 cm in diameter. This parallel light enters 
the test section vertically through a glass cover. After reflection at the drop and the 
glass plate, respectively, the light passes through a beam splitter to be spatially filtered 
by a pin-hole in the Fourier plane. A square-pixel CCD camera finally records the 
image for further digital processing. 
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Material properties Silicone oil Paraffin oil 
Viscosity, ,u Pa s) 200.98 - 3.615T+0.024T2 408.70 - 18.75T+ 0.25T2 
Surface tension, c (N m-') 20.465 -0.045T 28.938-0.1797' 
Density, p (kg m-3) 999.1 8 - 1.144T+ 0.0025T2 899.67- 1.07' 
Heat conductivity, h (W rn-l K-l) 0.163 (for T z 25 "C) 

TABLE 1. Material properties used, where T is in units of "C. For helium at T z 25 "C, 
A = 0.150 W m-' K' 

0.130 (for T x 25 "C) 

The above technique takes advantage of the following physics. The unwetted glass 
plate, as well as the middle region of the drop, reflect the light in a parallel manner. This 
parallel light passes through the low-pass filter in the Fourier plane and is recorded by 
the CCD camera as bright. In contrast, non-parallel reflected light from the outer 
inclined drop surface areas is stopped by the filter and appears dark. Thus, we obtain 
a high-contrast picture of the drop as shown schematically in figure 3. Subsequent 
image processing accepts the outer contour as the circumference of the drop. The 
number of pixels inside this closed contour is determined and, together with an initial 
calibration, a highly accurate measurement of the wetted area d(t) is inferred. The 
relative error of the area measurement proves to be less than 0.1 %. From d(t) the 
radius a(t) is calculated by assuming a circular shape. 

During the whole measuring protocol we consider three different thermal conditions : 
(I) an isothermal situation, T, = T,; (11) a heated plate, G- T, = + 25 "C;  (111) a 
cooled plate, T,- T, = - 25 "C. Thereby, the plate temperature, which is closely linked 
to the average liquid temperature, is always kept at T, = +25 "C. This allows us to 
maintain the thermophysical properties of the spreading liquid constant to a reasonable 
degree for all cases 1-111. Note that cases I1 and I11 represent two symmetric situations 
with the plate being heated (cooled) by identical temperature spans above (below) the 
ambient helium temperature. 

We use two different liquids, namely silicone oil Bayer M-100 and paraffin oil in our 
experiments. A new glass plate is prepared and fixed onto the copper cylinder for each 
drop. The preparation of the glass plate depends on the test liquid. In the case of 
silicone oil the plate is cleaned using ethanol in an ultrasonic bath for about 10 minutes. 
The glass plates are kept afterwards for at least two days within a dust-free container 
to ensure complete evaporation of the ethanol. In the case of paraffin oil an identical 
procedure is followed using distilled water instead of ethanol. The dynamic wetting 
behaviour of these liquids on glass prepared like this will be discussed in the following 
subsection. 

3.2. Scaling and preliminary measurements 
In order to allow a comparison of various test liquids and model predictions we apply 
the scaling laws (2.5), (2.6) to the experimental data. In (2.5), (2.6) there are several 
quantities which need to be fixed during preliminary measurements or from limiting 
behaviour. In this subsection these methods are explained. 

We have determined the dependence of various properties such as surface tension 
u(T),  viscosity p ( T )  and density p(T)  of our test fluids within the appropriate 
temperature range. Those data are summarized in table 1 and used for all scalings and 
dimensionless groups. 

The measurement of the initial contact angle 8, and the mobility capillary number 
C allows us to assess whether the assumptions of the theory, namely the lubrication 
approximation (0, 6 1) and the small-mobility-capillary-number approximation 



470 Peter Ehrhard 

(C < l), are adequately satisfied. The initial contact angle 8, of each drop is estimated 
from its volume % (from mass measurement) by assuming a spherical cap. We vary the 
initial contact angle 8, in the range 

6.9' < 6, < 18.3" for silicone oil/glass, (3.1) 
12.8' < 0, < 20.3" for paraffin oil/glass. (3.2) 

0.53 x < C < 8.20 x lo-' for silicone oil/glass, (3.3) 

0.59 x < C < 2.72 x lo-' for paraffin oil/glass. (3.4) 

The mobility capillary numbers C are in the range 

Clearly, the range of mobility capillary numbers proves the quasi-steady approach 
(C+ 0) to be a good approximation, while the lubrication approximation might lead 
to inaccuracies due to initial contact angles of up to 6, x 0.35. 

The lubrication approximation is appropriate here in view of the range of contact 
angles considered (cf. (3.1), (3.2)). Goodwin & Homsy (1991) show for the related 
problem of a liquid sheet with contact line on an inclined plane that results with the 
lubrication approximation compare well with those from a numerical solution of the 
Stokes equations as long as the contact angle is small enough. By tracking 'a 
representative functional' with capillary number (cf. figure 12 in their paper) they 
demonstrate predictions, for example for the slope of their particular macroscopic 
quantity, to be accurate to +2% in a surprisingly wide range of contact angles 
0 < 6 < 50" if lubrication approximation is used. Of course, any dependency of results 
on contact angle is shown to be lost. Thus, for the present problem a reasonably 
accurate model should result from the lubrication approximation, in particular since 
large contact angles are present only at very early stages of the spreading and decrease 
rapidly as time progresses. 

The determination of the Marangoni number M requires us to quantify the heat 
transfer conditions at the liquid/helium interface, encoded within the thermal 
boundary-layer thickness 6. For that reason we determine for two cases, namely 
T, - T, = & 25 "C, the vertical temperature profiles above the spreading drop using a 
0.25 mm diameter thermocouple. In detail we traverse the thermocouple vertically in 
steps Az = 0.2 mm and measure at each position the time-averaged helium temperature. 
From those temperature profiles above the liquid, we find a roughly linear 
increase/decrease over a thermal boundary-layer of thickness in a range 0 . 6 1  .O mm. 
Estimating the heat flux on the basis of conduction in the thermal boundary layer, the 
Marangoni numbers M are respectively: 

Tw- T, = +25 ' C :  

T,-T, =-25OC: Mz-0 .06 ,  
M z +0.085, 

for both silicone oil and paraffin oil. Equations (3.5) and (3.6) confirm, from their order 
of magnitude, the near-adiabatic thermal boundary conQtion at the liquid/helium 
interface. It should be kept in mind, however, that this method does not allow for a 
precise non-intrusive measurement of local temperatures within the helium. In 
particular the heat flow inside the probe and temperature oscillations of the helium, 
most evident for the unstable profile Tw > T,, introduce major errors besides the 
standard error of pure temperature measurements (kO.01 "C). Thus, values given in 
(3.5) and (3.6) are estimates and their order of magnitude only can be used with 
confidence. 
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FIGURE 4. Wetting behaviour on glass of the liquids used in the experiments, as determined by 
indirect measurements: (a) silicone oil, (b) paraffin oil. 

The dynamic wetting behaviour in dimensional form is encoded within the 
constitutive equation (2.7) with U,, = f i a t ,  

We take an indirect approach to determine the constants in (3.7). The advancing (static) 
contact angle 0, is estimated from the final drop size. In detail we find for silicone oil 
that no steady state exists as t --f co, and therefrom 8, x 0. In contrast, the paraffin oil 
experiments lead to a steady drop shape as t + 00, which allows an identification of the 
advancing - contact angle in an accuracy range 6.8" < 8, < 9.2". The average value 
8, w 8.6", is used henceforth. 

The mobility exponent m is determined using the isothermal silicone oil experiments. 
As 4+ co those drops follow to a good approximation the law 

while the model of Ehrhard & Davis (1991) predicts for isothermal axisymmetric drops 
under gravity the behaviour 

Therefore, regressing the experimental data to the model (3.8) allows the mobility 
exponent m to be identified. We find a narrow range of 2 . 6 4 < m  < 2.95 and 
henceforth use the average value m = 2.8. Although the determination of the mobility 
exponent has been performed using the silicone oil experiments, it defines the type of 
functional dependency in (3.7). Since the underlying physics is not changed when 
silicone oil is replaced by paraffin oil, we assume the same type of functional 
dependency, and so the same mobility exponent for paraffin oil on glass. For given 
Oo,eA,m the constant K in (3.7) can be derived from the measured radius ~ ( t )  by 
differentiation. i.e. 

at = K ( 6 - 8 ~ ) ~ .  (3.7) 

&-+a: aaP, (3.8) 

t -+cO:  a a t h .  (3-9) 

(3.10) 

From this equation K is found to be 
K = 3.4 x lop3 m/s for silicone oil/glass, (3.11) 
K = 8.7 x lop3 m/s for paraffin oil/glass. (3.12) 

We summarize the data obtained for the dynamic-wetting behaviour by presenting 
the corresponding functions graphically. In figure 4 the contact angle 8 is plotted as a 
function of the (advancing) speed of the contact line aL for both silicone oil on glass 
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(a)  and paraffin oil on glass (b). It should be kept in mind that these laws have not been 
obtained by direct measurements. The consistency of this method will be confirmed 
below. 

Our indirect findings concerning the dynamic wetting behaviour of these two liquids 
on glass can be supported by direct investigations on the dynamic contact angle 
conducted by other authors. De Gennes (1985), citing experiments by Hoffman (1975), 
concludes that the functional form o f8  =flat) should be universal and independent of 
the choice of materials. Moreover, Hoffman’s experiments suggest a model of type (3.7) 
for both complete wetting (6, = 0) and partial wetting (6, > 0). For small speeds of 
the contact line his data yield a mobility exponent of m = 3.050.5 (see de Gennes). 
Likewise, Rose & Heins (1962), Friz (1965) and Schwartz & Tajeda (1972) propose 
from their experimental data and physical reasoning that 

(3.13) 

where, additionally, a dependence on dynamic viscosity p and surface tension CT is 
obtained. For 8 -g 1, (3.13) recovers a mobility exponent of rn = 3 for cases of complete 
wetting. Calculating the constant K in (3.7) via (3.13) gives 

K = 3.95 x lop3 m/s for silicone oil/glass, (3.14) 
K = 6.47 x m/s for paraffin oil/glass, (3.15) 

which compares reasonably well with our indirect findings (3.1 l), (3.12). 
There is a recent theoretical article by Hocking (1992) that likewise supports the use 

of the mobility exponent m = 3. Starting from the dual assumptions of some form of slip 
at the contact line and the contact angle being always identical with the static contact 
angle (on a microscopic scale), he concludes that the dynamic variation of the apparent 
contact angle should be proportional to a$. Of course, the expression ‘contact angle’ 
throughout the present article has to be identified with ‘apparent contact angle’ in 
Hocking’s terms. Again therefrom m = 3 is readily inferred. 

Besides these more general findings on contact-line dynamics there are measurements 
directly related to our liquids. Hoffman’s experiments include measurements of the 
advancing dynamic contact angle for silicone oil in a glass capillary tube. These data 
are in excellent agreement with our indirect findings. Rose & Heins took measurements 
for paraffin oil using a similar glass-tube geometry. Their data confirm 6, M 10” as well 
as the functional dependency of the contact angle on the speed of the contact line. 
Concerning some discrepancies within the data for paraffin oil with respect to the 
precise values of K and O,, we stress that both the experiment of Rose & Heins and our 
indirect measurements exhibit considerable scatter of the data. Thus, in contrast to the 
silicone oil case, a more precise determination is not really possible from those 
measurements. 

4. Results for silicone oil/glass : unlimited spreading 
From the dynamic-wetting behaviour of silicone oil on glass, shown in figure 4(a) ,  

it can be concluded that, given an initial contact angle 8, > 0, a drop will spread 
(a, > 0) and therefore decrease its actual contact angle 8 as time progresses. Since 
8, z 0, every positive contact angle O will correspond to a speed at > 0, and hence the 
drop will spread forever. This behaviour is attributed to cases 8, M 0 and is typically 
observed for spreading of silicone oil on glass. In the following sections we firstly 
present isothermal spreading results for this case. This demonstrates the ability of our 
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FIGURE 5. Isothermal spreading of silicone oil on glass, the perfectly wetting system: drop radius as 
function of time for three drops of different volumes. (a) Experimental data and regression curves 
therefrom, (b) experimental data and model predictions. 

overall experimental procedure to recover experimental observations reported by other 
investigators. A careful comparison is conducted. Secondly, results for non-isothermal 
conditions are presented. These types of experiments have never been performed before 
and thus give new results. 

4.1. Isothermal conditions 
In figure 5 we show the development of three typical single drops of different volumes 
K,  obtained under isothermal conditions, i.e. T, = T, ( M  = 0). The drop radius LZ is 
plotted as a function of time t ,  in double-logarithmic coordinates. From the definition 

16 FLM 2 5 7  
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(2.6) of the Bond number G we can infer three different Bond numbers G, for three 
different initial radii a,, ,. In particular the Bond number increases quadratically with 
the initial drop radius, implying that gravitational forces are more important for large 
drops than for small drops. This interrelation is reflected by the growth behaviour of 
the drops shown in figure 5.  From the regression of the experimental data of each drop 
for both small and large times we obtain 

with co < c,. These experimental regression results for both small and large times are 
incorporated in figure 5(a). They indicate that a transition occurs from an initially 
small slope towards a larger slope as t increases. The different slopes can be attributed 
to the different effects that control the process as discussed by Ehrhard & Davis (1991). 
At small times capillary forces are dominant, causing a smaller slope c,. As the drop 
develops, the height approaches zero and the interface curvature tends to infinity. 
Therefore, at large times gravitational forces control the process, causing a larger slope 
c,. One would thus expect this transition to occur earlier when the Bond number is 
larger, i.e. for larger drops. By comparing the intersections of the asymptotic laws (the 
dashed lines in figure 5 4  we find, indeed, this tendency proven. 

While figure 5 (a) accurately demonstrates the experimental findings, in figure 5 (b) 
we compare the experimental data with theoretical predictions using the model of 
Ehrhard & Davis. These predictions are obtained for the appropriate Bond numbers 
G = 2.4, 7.6, 14.1 and transformed into physical units by using the scaling laws (2.5). 
The comparison demonstrates good agreement between prediction and experiment for 
all three drops within the complete observation interval of more than 5 hours. In 
particular the change in slope as time progresses (cf. figure 5 4  is perfectly shown by 
the model predictions. Therefrom we conclude that the model of Ehrhard & Davis, and 
linked with it the main assumptions as summarized in $2, are appropriate to describe 
the isothermal spreading of such drops on horizontal surfaces. 

The above findings on the isothermal spreading of silicone oil, including the effect 
of gravity, are not all new. Various authors have come to identical conclusions from 
experimental (cf. Cazabat & Cohen Stuart 1986) and from theoretical (cf. Ehrhard & 
Davis 1991) points of view. Our measurements within the isothermal set-up with a flow 
of ambient helium confirm, additionally, the negligible effect of the stagnant-point flow 
above the spreading drop. This can be included from our recovery of the typical time 
laws as found by other experimentalists using set-ups without an ambient flow. A 
quantitative comparison of the exponents in (4.1) and (4.2) will be made below in 
table 2. 

In the next step we take our set of isothermal data and apply the scaling laws (2.5). 
Additionally, we include original data from Cazabat & Cohen Stuart (1986) and Chen 
(1988) and scale those accordingly. This procedure allows a scaled comparison of both 
a set of drops with vastly different viscosities and volumes, and our corresponding 
theoretical predictions. It should be mentioned that our knowledge of the fluid 
properties of the previous experiments is incomplete with respect to temperature 
dependencies. Therefore, scaling of these authors’ data relies eventually on non-precise 
fluid properties. 

Figure 6 shows, again in double-logarithmic coordinates, the non-dimensionalized 
drop radius a(t) from the present experiments and from those of Cazabat & Cohen 
Stuart and Chen. The experiments are conducted in a Bond number range of 
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FIGURE 6. Isothermal spreading of silicone oil on glass, the perfectly wetting system: drop radius as 
function of time, in dimensionless form. Experimental data are included from Cazabat & Cohen 
Stuart (1986) (0) and Chen (1988) (a). Present experiments are given by symbols 0 .  Parameters for 
the theory (solid lines) are M = 0, 8, = 0, m = 2.8. 

Axisymmetric drops 
a cc t" 

Dominant Viscosity 

Tanner (1979) 0.109 0.106-0.112 ST 1.008, 13.0 
Reference f i  n force (Pa s> 

Cazabat & Cohen Stuart (1986) 0.105 0.094-0.125 ST 0.020, 1.0 0.129 0.1 18-0.137 G 
Chen (1988) 0.106 0.080-0.123 ST 0.195 

0.125 Present results 0.1 12 0.089-0.122 ST 
0.145 0.128-0.165 G 

TABLE 2. Isothermal spreading results for silicone oil on glass. ST and G denote surface-tension 
controlled and gravity-controlled, respectively 

0.5 d G ,< 16.4 and therefore we get a family of experimental curves. By analysing 
those curves more closely we find that the lower curves belong to low Bond numbers 
and the upper curves to high Bond numbers. Thus, with very few exceptions, the curves 
are sorted with respect to Bond number. 

These experimental findings are in accordance with the theoretical predictions. By 
varying the Bond number G within the model, we find a family of curves. The limiting 
curves for G = 0.5 and G = 16.4 are given as solid lines in figure 6. The model 

16-2 
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FIGURE 7. Non-isothermal spreading of silicone oil on glass, the perfectly wetting system: drop radius 
as function of time, in dimensionless form. Experimental data are given by closed symbols (heated 
plate) and open symbols (cooled plate). Parameters for the theory (solid lines) are G = 10, 0, = 0, 
m = 2.8. 

predictions and the experimental behaviour are in good agreement. The very few data 
points outside the theoretical range are from experiments by Cazabat & Cohen Stuart 
or Chen, for small times. As previously explained, those slight discrepancies might be 
attributed to non-precise knowledge of the relevant fluid properties. Moreover, during 
this early stage of spreading the initial drop shape may still have some influence. The 
initial drop shape, however, depends on the handling of the injection needle during 
positioning and therefore is variable. 

In table 2 we show a comparison among the slopes obtained by various 
experimentalists. The corresponding viscosity range is 0.02 < p < 13.0 Pa s. By 
regressing the experimental data to a model of type (4.1) and (4.2), the slopes can be 
inferred ; these are valid within the capillary-dominated and the gravity-dominated 
regimes, respectively. For capillary-dominated spreading 0.105 < ?i < 0.1 12 is con- 
firmed by all experimentalists, while for gravity-dominated spreading we get 
0.129 < A < 0.145. As shown from figure 6, the present experiments cover, for the first 
time, a sufficient range in time to permit a reliable determination of the slope in the 
gravity-dominated regime. 

4.2. Non-isothermal conditions 
In figure 7 we present in an equivalent, non-dimensionalized form, our results for non- 
isothermal conditions. Two experimental families of curves are shown : open symbols 
relate to the cooled plate, while closed symbols relate to the heated plate. We recognize 
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a different behaviour of the drops depending on the thermal conditions. The cold plate 
obviously augments the spreading process while the hot plate retards it. Within each 
family of curves a range of Bond numbers is represented, owing to a variety of drop 
sizes: the lower curves correspond to small Bond numbers and the upper curves 
correspond to large Bond numbers. This means that within each family of drops, the 
curves again sort with Bond number. The actual range of Bond numbers is 
1.5 d G 6 14.2. 

For comparison we have included three theoretical curves calculated for an average 
Bond number of G =  10 and three thermal conditions, namely the heated plate 
( M  = +0.04), the cooled plate ( M  = -0.04) and the isothermal situation ( M  = 0). The 
latter represents essentially an average behaviour of all isothermally conditioned drops 
shown in figure 6. For clarity we do not include the ranges of Bond numbers, which 
would break up every solid curve into two range-limiting curves. The influence of the 
Bond number in this case is, however, identical to that described for the isothermal 
situation. If we compare the theoretical curves found for M = f0.04, with the 
experimental data we find reasonable agreement. Deviations are only present for the 
case of the cooled plate at large times, where the model predicts a faster spreading than 
the experiments suggest. This discrepancy, observed for very thin liquid layers, might 
be attributed to three-dimensional effects which are described in $6. 

As seen from figure 7, we get agreement between model and experiments for 
M = k0.04. In contrast, our preliminary measurements (see $3.2) suggested values of 
M = +0.085 and M = -0.06, respectively, for the Marangoni number. Here a 
considerable discrepancy remains. In view of the method applied to determine the 
actual Marangoni number experimentally, these results should be taken only as order 
of magnitude determinations; such a method is strongly intrusive. 

5. Results for paraffin oil/glass : limited spreading 
In contrast to the experiments in $4, paraffin oil on glass exhibits partial wetting. 

Thus, given an initial contact angle B0 > 8, (cf. figure 4b) the drop is expected to spread 
(at > 0) until it approaches an actual contact angle 0 z 8,. As t+ 00 we therefore 
expect a steady drop shape, whereas the final drop radius, am, will be affected by the 
thermal conditions (i.e. by the Marangoni number M ) .  The pertinent correlation, given 
by Ehrhard & Davis (1991), leads to a decrease (increase) of the final drop radius a,  
if the plate is heated (cooled) with respect to the ambient gas. 

5.1. Non-isothermal conditions 
Our results for paraffin oil on glass, subject to non-isothermal conditions, are shown 
in figure 8, with closed symbols for the heated plate and open symbols for the cooled 
plate. We recognize an asymptotic approach for all curves to a steady final drop radius 
(note the logarithmic timescale). This result is characteristically different from the 
observations in the case of complete wetting (see $4). In particular for conditions of a 
heated (cooled) plate the drops spread more slowly (rapidly) and approach a smaller 
(larger) final radius. With different drop volumes, we realize a range of Bond numbers 
within these experiments, namely G = 2.9, 8.2 (heated plate) and G = 2.7, 14 (cooled 
plate). In contrast, the theoretical curves (solid lines) are calculated for an average 
Bond number of G = 10 and Marangoni numbers M = k0.04. As before, the lower 
experimental curves in both cases are associated with low Bond numbers. Thus the 
effect of gravity, which has been discussed in $4.1 for complete wetting, is completely 
analogous for the partially wetting experiments. 
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FIGURE 8. Non-isothermal spreading of paraffin oil on glass, the partially wetting system: drop radius 
as function of time, in dimensionless form. Experimental data are given by closed symbols (heated 
plate) and open symbols (cooled plate). Parameters for the theory (solid lines) are G = lo,@, = 0.55, 
m = 2.8. 

Even though there are some imperfections with respect to the smoothness of the 
experimental curves, we detect a reasonable agreement between model predictions and 
experiments. In particular, the effect of Marangoni number M on both the time laws 
and the final drop radius is demonstrated. As discussed above, we assume a mobility 
exponent m = 2.8, as determined from the completely wetting experiments with 
silicone oil on glass, to be likewise valid for the paraffin oil experiments featuring 
partial wetting. The theoretical curves in figure 8 are computed using m = 2.8, but 
varying the mobility exponent within a range 2 d rn d 3 resulted in no major changes 
to the theoretical curves. Thus, the agreement would be valid for all these values of m, 
implying that a precise determination of the mobility exponent purely on the basis of 
our paraffin oil experiments (partial wetting) is hardly possible. 

5.2. Transient conditions 
In this section we focus our attention on the question of how the thermal conditions 
affect the approach towards a final steady state of the drop. For that reason we conduct 
an experiment with, initially, conditions of a heated plate (M > 0), which are expected 
to slow down the spreading and the drop will approach a 'small' final diameter. At 
t z 55 the temperature is changed, corresponding to a transition from conditions of a 
heated plate ( M  > 0) to those of a cooled plate ( M  -= 0). For this transition we need 
a time span of At z 32. The start and end of the transient is marked in figure 9 by 
vertical dashed lines. 
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FIGURE 9. Transient experiment on paraffin oil on glass, the partially wetting system: drop radius as 
function of time, in dimensionless form. Experimental data are given by symbols 0 ; the start and end 
of the transient change of thermal conditions are marked by vertical dashed lines. Parameters for the 
theory (solid and dashed lines) are G = 10, 0, = 0.55, rn = 2.8. 

The experimental data (open symbols) in figure 9 show the expected response of the 
drop to the change of thermal conditions. During the transient period a strong 
acceleration of the spreading occurs showing as a ramp-type time behaviour. Thus the 
approach towards a ‘small’ final drop radius (corresponding to the M > 0 case) is 
interrupted and an approach towards a ‘large’ final drop radius (corresponding to the 
M c 0 case) is developing. For comparison we have included solid lines corresponding 
to theoretical predictions for the cases M = kO.04 and an average Bond number of 
G =  10. 

6. Three-dimensional effects 
There are several situations that potentially lead to drops that no longer have 

circular shape. Firstly, if drops develop towards extended very thin liquid layers, one 
expects surface roughness to be of lengthscale similar to the layer thickness. This causes 
at first a more or less stochastic distortion of the ideally circular drop perimeter. Given 
such conditions, it is clear that a two-dimensional model will fail to describe the 
evolution of the drop. In fact, we occasionally have observed such ‘rough’ drop 
contours, and have discarded these data from further processing. 

Secondly, Carles & Cazabat (1989) have found three-dimensional instabilities which 
occur during the ‘accelerated’ spreading of oil drops. They use an atmosphere 
saturated with a volatile compound in order to alter surface tension in a transient 
manner; this causes an ‘acceleration’ of the spreading. During our measurements those 
phenomena likewise occurred, sometimes for large times. In figure 10 we show two 
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FIGURE 10. Examples of wavy instabilities at the drop circumference. One-quarter of the wetted area 
d(t) for each of two drops of different size are shown for silicone oil on glass, the completely wetting 
system, at a late stage. 

examples of wavy instabilities at the drop circumference, as observed for two different 
drop sizes under isothermal conditions at large times. One-quarter of each drop of the 
completely wetting system silicone oil/glass is shown. A preliminary determination of 
the instability wavelength gives A, = 2.0 mm and A, = 2.2 mm, whereas a dependence 
on the drop radius is difficult to infer from our sparse data. Carles & Cazabat, though, 
have observed a weak increase of the wavelength with increasing drop radius, which 
we could confirm. 

Our observations concerning these effects do not allow a clear judgement on under 
what conditions such instabilities occur; they have been observed more or less 
randomly for all thermal conditions, usually at large times. Since we have made 
comparisons to a two-dimensional model, we have ignored these data in all of our 
figures 5-10. A detailed experimental study on those effects is beyond the scope of the 
present investigation and beyond the capabilities of the techniques employed. 

7. Discussion and conclusion 
We have conducted experiments on the spreading of axisymmetric drops, subject to 

three different thermal conditions : (i) isothermal conditions, (ii) heated-plate 
conditions, (iii) cooled-plate conditions. Two classes of dynamic wetting behaviour 
have been examined, namely the completely wetting system of silicone oil/glass and the 
partially wetting system of paraffin oil/glass. The experimental data are used to 
validate the theoretical model proposed by Ehrhard & Davis (1991) in which the 
contact angle 0 is related to contact-line speed U,, by U,, = K(e-8Jm, the mobility 
capillary number is small, and lubrication theory applies. 

7.1. Unlimited spreading 
For the completely wetting system of silicone oil/glass under isothermal conditions, we 
confirm the results of Cazabat & Cohen Stuart (1986) and Chen (1988), who observed 
that after an initial transient, the spreading, which is capillary-controlled, develops 



Isothermal and non-isothermal spreading 48 1 

towards a gravity-controlled spreading with larger spreading rates. The time history of 
the position of the contact line (drop radius) a(t) is in good agreement throughout the 
entire time interval with both previous experimental findings and theoretical 
predictions. The effect of gravity, as measured by the Bond number G, is affected by 
different initial drop volumes and material properties. It proves to be correctly reflected 
by the theory. The above observations with respect to isothermal conditions suggest a 
mobility exponent of m z 2.8. The data, moreover, demonstrates that the scaling laws 
(2.5) are adequate for comparing experiments with different drop volumes and 
viscosities. 

The non-isothermal conditions lead to a retardation (augmentation) of the spreading 
when the plate is heated (cooled) with respect to the ambient gas. Thus, time histories 
for spreading under non-isothermal conditions are clearly distinguished from those 
under isothermal conditions. The effect of gravity is observed throughout each 
subgroup of curves, as large drops (large G )  tend to enter the gravity-dominated regime 
at earlier times, and thus, spread faster. All the above experimental findings are in good 
agreement with the predictions of Ehrhard & Davis (1991), using M = f0.04. 

7.2. Limited spreading 
A second set of experiments was performed using the partially wetting system of 
paraffin oil/glass. The experiments show, again, a retarded (augmented) spreading for 
the case of the heated (cooled) plate. The final radius approached is likewise affected 
by the thermal conditions; the drop spreads to a smaller (larger) radius if the plate is 
heated (cooled). The latter effect is clearly demonstrated by a transient experiment 
using one single drop. The predictions of Ehrhard & Davis (1991) relating to this 
situation give quantitative agreement if one takes M = kO.04. Even though there is no 
direct measurement of the mobility exponent in this partially wetting system, there is 
evidence that m = 2.8 applies. 

The present work, for the first time, experimentally confirms the influence of 
thermocapillary effects on the evolution of a spreading drop. We rely on measurements 
of the wetted area d(t), rather than measuring drop profiles, temperature fields or 
velocity fields. When the spreading is observed for very long times and/or very thin 
liquid layers one sees a substantial deviation from the axisymmetric drop. This is not 
surprising (cf. Carles & Cazabat 1989) and occurs through an either noisy or wavy 
disturbance at the drop circumference. This disturbance may lead to a three- 
dimensional instability, which, at least for larger amplitudes, limits the validity of the 
axisymmetric model. 

There is the potential for a further instability to occur, namely a two-dimensional 
instability of the interface which maintains axisymmetry. Ehrhard & Davis (1991) have 
conjectured the existence of such a Marangoni instability in the heated-plate situation. 
However, we did not observe any indication of such an instability, though our 
measuring technique may not resolve small-amplitude waves at the interface. 

The author gratefully acknowledges valuable discussion with S .  H. Davis, North- 
western University (USA), during the course of this work. Moreover, he is indebted to 
G. Richter for running the experiments within the frame of his Diploma thesis at the 
University of Karlsruhe (FRG). 
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Appendix. Rescaling of the equations to allow for arbitrary volume 
In the theory of Ehrhard &Davis (1991) their equations (3.14) and (3.18) involve the 

choosing of a specific drop volume (we employ their notation: p and a following 
equation numbers denote the two-dimensional and axisymmetric cases respectively), 
namely 

V, = a;eo, (A 1P) 
V, = a3,0,. (A 1 4  

It can be shown by using the following rescaling procedure that their set of equations 
is also valid for arbitrary drop volumes. We define a dimensionless drop volume as 

and employ a modified set of dimensionless variables (with respect to their equation 
(3.1)) 

and find the complete set of equations unchanged except for their (3.13), which now 
reads 

iioz(l) = - 1/v, 

iio*(l) = - l /V,  (A 4 4  
(A 4P) 

if the dimensionless parameter groups are redefined (with respect to their (3.20)) as 

It can be easily proven that the case V = 1, which is equivalent to (A l), transforms the 
present set (A 2k(A 5)  into the set of equations given by Ehrhard & Davis. From the 
modified scaling (A3) we can infer 

for t“+ 00 (cf. Ehrhard & Davis, equation (6.6)). This dependency on the drop volume, 
at least for the axisymmetric case, is in accord with the findings of de Gennes (1985). 
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